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Abstract. The recent attempt to account for the existence of several magnetic phases in insulating
perovskite manganites in terms of the interplay between the orbital and spin orders produced by
the localized eg and t2g electrons is extended to the metallic state which is obtained on doping.
It is shown that the activation energy for electrical conductivity obtained on the basis of the
correlated polaron transport depends on the product of the spin and bond order parameters which
changes rapidly near the magnetic transition temperature and accounts for the existence of colossal
magnetoresistance in this system.

1. Introduction

The origin of the colossal magnetoresistance (CMR) in the perovskite manganites
A1−xBxMnO3 (A = La, Pr, Nd, Sm; B= Ca, Sr, Ba) remains unclear despite extensive
effort [1–4]. Recently the electronic structure of manganites has been investigated and the
effective Hamiltonian has been obtained taking into account the degeneracy of the eg orbitals
and strong electron correlations [5,6]. It has been shown that in the mean-field approximation
stable spin and orbital ordered phases exist and account for the stabilization of the low-
symmetry A-type antiferromagnetic (AF) phase in LaMnO3 due to the dependence of the
magnetic interaction on the bond direction. The spin-wave spectrum derived for this model
is consistent with a recent neutron scattering experiment on LaMnO3 [5]. Furthermore, it
has been shown that the origin of several magnetic phases observed in manganites lies in
the interplay between the spin and orbital degrees of freedom. Wollan and Koehler [7] have
carried out neutron diffraction studies of the spin structures as the concentration of Mn4+ in
La1−xCaxMnO3 is varied. Goodenough [8] has given a qualitative theory of magnetic exchange
via covalent bonds which explains the whole variety of ferromagnetic and AF spin structures
observed in this system. In the theory of ‘double’ exchange [9–11] the magnetic order is
a result of competition between super-exchange which favours an AF spin arrangement and
‘double’ exchange which promotes ferromagnetic spin order. Though there has been a great
deal of effort made to understand the magnetic structure on the basis of spin–spin interaction
in the presence of Jahn–Teller lattice distortion and ‘double’ exchange, there has been little
attempt to understand the nature of the charge carrier and its transport properties, which is
essential for exploring the origin of the CMR effect. Palstraet al [12] have recently reported
on the transport properties of doped LaMnO3. They find that above the magnetic transition
temperature the charge carriers behave as polarons and the transport is not dominated by the
spin disorder. Furthermore, Bahaduret al[13] find that some CMR systems exhibiting identical
magneto-transport properties possess very different magnetic properties. This suggests that
the behaviours of both the localized and the mobile charge carriers are strongly influenced by
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the long-range orbital and spin order. The transport properties should therefore be examined
with the presence of coupling of the mobile charge carriers to lattice vibrations and magnetic
order.

In this paper we start with the effective Hamiltonian of Ishiharaet al [5] which describes
the spin and orbital coupling between neighbouring Mn3+ ions in LaMnO3. The magnetic
coupling is then expressed in a form close to the Heisenberg model for a layered spin structure.
On doping, the delocalized eg electron is described by the Holstein Hamiltonian for a small
polaron [14] and its transport properties are analysed with bond and spin order present in
the lattice. An expression for the electrical conductivity by polaron hopping is obtained
using the method followed by Reik [15]. For compounds which have ions with mixed-valence
states at crystallographically equivalent sites, the configurational and magnetic energies remain
unchanged if the ions of one kind simultaneously exchange their sites with ions of the other
kind. This case of correlated polaron motion has been considered by us for ferrites [16] and
for oxide superconductors [17] and has been applied in the present case to manganites. It
has been shown that the activation energy for dc electrical conductivity obtained on the basis
of correlated polaron transport contains a term that depends on the product of the magnetic
and bond order parameters. The activation energy therefore varies rapidly near the magnetic
transition temperature, which accounts for the existence of the colossal magnetoresistance
observed in this system.

2. The effective Hamiltonian for localized and delocalized electrons

It has been shown by Ishiharaet al [5] that the effective Hamiltonian for an electron in a doubly
degenerate eg orbital coupled to t2g spins in Mn3+can be written as

Heff = Heg +Ht2g (1)

Heg =
∑
i,τ,σ

εdc
†
iτσ ciτσ +

∑
ijσ
ττ ′

(tττ
′

ij c
†
iτσ ciτ ′σ + HC) + U

∑
iτ

niτ↑niτ↓ +U ′
∑
iσ

niασ niβσ

− J ′
∑
i

σiα · σiβ −K(σiα + σiβ) · Si (2)

Ht2g = J t2g
∑
ij

Si · Sj . (3)

In equation (2),c+
iτσ (ciτσ ) represents the creation (destruction) operator for the doubly

degenerate eg electron in theτ -orbital (τ = α, β)with spinσ andS is the spin of the t2gelectron.
The first term describes the level energy,εd, of the eg electron,t ττ

′
ij denotes the electron transfer

integral for transfer from sitei and orbitτ to orbitτ ′ on a near-neighbour sitej ,U andU ′ are
intra- and inter-orbital Coulomb integrals,J ′ denotes the inter-orbital exchange andK describes
the Hund coupling. Equation (3) describes the near-neighbour AF interaction amongst the t2g

electrons. Since the electron–electron interaction in equation (2) has the largest energy scale,
Heg excludes double occupancy of the eg orbitals. The second-order perturbation processes
involving the inter-site hopping integralt ττ

′
ij lead to anisotropic ferromagnetic interaction when

an electron hops from an occupied orbitalτ (=α) at i to an unoccupied orbitalτ ′ (=β) atj . It
has been shown [5] that in the presence of (3x2− r2/3y2− r2)-type ordering in LaMnO3 the
electron transfer to unoccupied (y2− z2/z2− x2) orbitals at nn sites results in a ferromagnetic
coupling between ionic spins in theab-plane much larger than what is produced in thec-
direction by the isotropic AFJ t2g interaction and accounts for the A-AF structure observed in
this compound. We express this anisotropic spin–spin coupling in the form of a Heisenberg
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Hamiltonian. An expression for the contribution to the effective Hamiltonian from the second-
order perturbation process with respect to the electron transfer,HSO

eff , can be given [5] in terms
of the pseudo-spin operator,τ , in the orbital space withτz = 1/2 and−1/2 denoting the
states in whichα = 3x2 − r2 andβ = z2 − y2, respectively, are occupied and the total spin
I = σ + S whereσ is the spin of the eg electron andS is the spin of the t2g electron. The
coupling between spins is such thatσ = (1/4)I andS = (3/4)I. For tαα = tββ = 0,

HSO
eff = −

2

U ′ − J
∑
ij

1

16
(4ninj + IiIj )

[
(t
αβ

ij

2
+ tβαij

2
)

(
1

4
ninj + τizτjz

)
− tαβij tβαij (τi+τj+ + τi−τj−)

]
+

9

16
J ′t2g

∑
ij

Ii · Ij (4)

whereni is the number operator at sitei. Equation (4) shows that there is strong coupling
between the spin and orbital degrees of freedom. The spin–spin coupling can be written in
the following form, comprising an isotropic term,J , and an anisotropic term containing a
symmetric tensor,0ij :

Hs = −2J
∑
ij

Ii · Ij − 2
∑
ij

Ii · 0ij · Ij (5)

where

J = −(9/32)J t2g (6)

and

0ij = 1

16(U ′ − J ′)
[(
t
αβ

ij

2
+ tβαij

2)(1

4
ninj + τizτjz

)
− tαβij tβαij (τi+τj+ + τi−τj−)

]
. (7)

We express the exchange integral as [18]

Jij = − 1

4SiSj

(∑
k

2b2
k

Uk

)
(8)

wherebk is a one-electron matrix element that connects the two ions andUk is the on-site
repulsion energy. The summation overk extends over all possible routes of the super-exchange
interaction. Ifbσ andbπ denote the effective electron transfer integrals along theσ - andπ -bond
directions, respectively, then

J = − 1

16

[
4b2

π

U ′ − J ′
]

(9)

and

0aa = 1

N

∑
ij

0ij = 1

16

[
2b2

σ

U ′ − J ′
]

0bb = 0 0cc = 0. (10)

Herea denotes the eg-bond direction in theab-plane andN denotes the number of Mn ions.
An estimate ofJ and0aa can be made from the spin-wave spectrum. For LaMnO3 the width
of the spin-wave spectrum is determined using neutron scattering and is approximately 32 and
5 meV along theab-plane and thec-direction respectively [19]. This givesJ = 0.62 meV. To
fit the dispersion curve of the spin wave, a value of 6.5 meV is taken forJ t2g in reference [5]
which is three times larger than the value obtained by us. The width of the spin-wave spectrum
along (π/a, π/a, 0) is 32 meV. TakingJeff = [0aaJ ]1/2, we get0aa = 1.61 meV. From
equations (9) and (10) the values ofbσ andbπ , with U ′ = 5 eV andJ ′ = 2 eV as used in
reference [5], are 0.20 and 0.09 eV respectively. For spinel ferrites the values of the transfer
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integrals for 180◦ super-exchange interaction withU = 10 eV,J = 0 arebσ = 0.31 eV and
bπ = 0.18 eV [20]. These values are comparable for manganites and ferrites despite the fact
that the energies of the intermediate states in the two cases are different by almost a factor of
three.

The exclusion of doubly occupied eg states in LaMnO3 prevents first-order perturbation
processes involving electron transfer. On doping, mobile charge carriers are introduced which
initiate the ‘double-exchange’ process. We examine it in terms of small-polaron formation
and transfer in the presence of orbital and spin order. Following Holstein [14], we express the
Hamiltonian for the electron using the first two terms in equation (2) and add the Hamiltonian
for the phonon and the electron–phonon interaction:

H
p
eff = He +Hph +Hep (11)

He =
∑
iσ

εdc
†
iσ ciσ +

∑
ij
σσ ′

(
t
p
ij
σσ ′
c

†
iσ cjσ ′ + HC

)
(12)

Hph =
∑
qλ

h̄ωqλa
†
qλaqλ (13)

Hep=
∑
qλi

h̄ωqλα
1/2
λ (q)i(aqλe

iqRi − a†
qλe
−iqRi))c

†
i ci . (14)

The electron transfertpij
σσ ′

occurs due to the electron–phonon coupling in equation (14).

αλ(q) denotes the electron–phonon coupling constant and is defined in terms of the optical
deformation potential constant. Reik [15], starting withH p

eff , uses the polaron canonical
transformation to obtain the following Hamiltonian for the polaron and displaced phonons:

H
p′
eff = Hpol +H

′
ph (15)

Hpol =
∑
i

(εd − εp)l
†
i li +

∑
ij

(t
p
ij l

†
i ljXij + HC) (16)

H ′ =
∑
qλ

h̄ωqλb
†
qλbqλ (17)

whereσ = σ ′. Herel†i (li) denotes the creation (destruction) of a polaron at sitei, b†
qλ (bqλ)

denotes the creation (destruction) of a displaced phonon of wave vectorq and polarizationλ
andXij denotes the Frank–Condon (FC) transitions. The ground-state energy in equation (16)
is lowered by an amountεp by the electron–phonon interaction.

It follows from equation (5) that localized eg electrons in Mn interact throughHs which,
along with bond order, leads to an A-AF spin structure in LaMnO3. On doping, the mobile
electrons are introduced into the system. As discussed by de Gennes [11], the effect of hopping
charge carriers in the antiferromagnetic lattice is to distort the ground-state spin arrangement,
since hopping reduces the energy by a term of first order in the distortion angle while the loss of
A-AF exchange energy is of second order. Starting with an A-AF spin arrangement in which
spins are coupled ferromagnetically to the spins in the same layer and antiferromagnetically
to the spins in the adjacent layers, as in figure 1(a), de Gennes shows that in the presence of
double exchange the magnetization of successive layers makes an angleθ , which is given by

cos
θ

2
= εpx

4JS2
(18)

wherex is the concentration of the charge carriers,εp is the gain in the energy due to hopping
and the A-AF coupling between the spins in the adjacent layers is caused by the t2g spins.
Using the neutron diffraction data of Wollan and Koehler [7], de Gennes [11] has estimated a
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Figure 1. The spin arrangement on an octant of a magnetic unit cell in (a) LaMnO3 (type A),
(b) CaMnO3 (type G), (c) Nd0.5Sr0.5MnO3, antiferromagnet, insulating, 06 T < 160 K (type A),
(d) Nd0.5Sr0.5MnO3, ferromagnetic, conducting, 160< T 6 265 K (type B).

value of 16 forεp/JS
2 for La1−xCaxMnO3. TakingJ = 0.62 meV,S = 3/2 givesεp = 268 K.

We show later that for manganites the resistivity data give a value forεp ranging between 70 K
and 600 K.

The spin arrangement forεp = 250 K obtained using equation (18) is that of a collinear
ferromagnet forx > 0.26. Following de Gennes, the Curie temperature for a ferromagnetic
spin arrangement in La1−xCaxMnO3 is given by

kBTc = 2

3

[
za|J a| − zb|J b| − zc|J c|

]
I 2 +

2xzεp

5
(19)

while for the insulating A-AF spin arrangement the Néel point is given by

kBTN = 2

3

[
za|J a| − zb|J b| + zc|J c|

]
I 2 (20)

where thezi (i = a, b, c) are the numbers of nearest neighbours along thea-, b-, c-directions,
z is the total number of nearest neighbours andJ i is the effectiveJ in thei-direction. Taking
J a = 1.61 meV,J b = J c = 0.62 meV,x = 0.33 meV,εp = 250 K, we obtainTc = 222 K
for La0.67Ca0.33MnO3, close to the experimental value of 235 K [21]. This calculation ofTc is
made assuming that there is no change in the value ofJ i andεp asx is increased from 0 to 0.33.
However, as the number of Jahn–Teller ions varies withx, the lattice distortion produced by
the JT effect changes both the crystal and magnetic energies. Taking 90 K forTN for CaMnO3

with J a = J b = J c, we get a value of 0.55 meV forJ which is smaller than that of 0.62 meV
observed for LaMnO3. The spin arrangement due to isotropic t2g AF interaction is a G-type
AF one, shown in figure 1(b).

Recently, a transition from an AF insulating to a ferromagnetic metallic state at 160 K
has been reported for Nd0.5Sr0.5MnO3 by Caignaertet al [22]. They attributed the metallic
properties to the absence of JT distortion of Mn ions in the orthorhombic phase obtained at
RT. We can take the magnetic order in the insulating phase as A-AF, shown in figure 1(c). In
that case, equation (20) applies. TakingJ b = J c = 0.62 meV, we obtainJ a = 2.5 meV.
In the ferromagnetic phase the spin arrangement is that of a B-type ferromagnet shown in
figure 1(d). In this case, a ferromagnetic contribution from mobile charge carriers enters, as
in equation (19). FromTc = 265 K we obtainεp = 204 K, in reasonable agreement with
the observed values for manganites. The resistivity data clearly show the thermodynamic
transition from an AF to a ferromagnetic phase and indicate an interesting dependence of the
resistivity on the magnetic structure. The resistivity varies asm2(t) wherem(t) is the reduced
sublattice magnetization of the antiferromagnetic lattice at the reduced temperaturet = T/TN.
In the ferromagnetic phase it is also a function ofm(t). We discuss the relationship between
the electrical resistivity and the atomic and magnetic order in section 4.
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3. Electrical conductivity

The Hamiltonian in equation (16) has been used by Reik [15] to obtain expressions for the dc
and optical conductivity following Kubo’s current–current correlation formulation. Recently
we have used it [23] to explain the dc conductivity and photoemission and femtosecond
spectroscopy results for oxide superconductors. It has been shown that the dc conductivity by
polaron hopping for a simple cubic structure is given by

σhop=
√
π

2
n

(
tp

h̄

)2

e2a2βτ sech2
(
εpβ

2

)
e−UHβ. (21)

Heren represents the number of polarons,β = 1/kBT , a is the separation of the nearest
neighbours between which the electron hops,τ is the relaxation time andUH represents
the activation energy of the dc mobility. For mixed-valence compounds where correlated
polaron transport occurs without FC transitions we obtain a similar expression for the hopping
conductivity [17] but with the conditions

UH = 0 (22a)

τ−1 = tp

h̄
= ωph. (22b)

A classical method for estimatingεp based on the Madelung energy for a linear chain
has been given by us [16]. We note from equation (21) that the correlated polaron hopping
mobility satisfies the Einstein relation for diffusivity:

µp = e
(
ωph

2π

)
a2β exp(−UHβ) (23a)

and the concentration of the charge carriers varies withT as

n(T ) = n sech2(εpβ/2). (23b)

The bond and spin orders for uncorrelated polarons when FC transitions occur affect the
relaxation timeτ and the dc activation energyUH in equation (21). It was shown by Reik that
τ andUH both depend on the average number of phononsnph in the cloud of the polaron. For
T > θD/4,

1

τ
=
(

2nph

sinh(h̄ω0β/2)

)1/2

ω0 (24)

UH =
∑
qλ

αλ(q) sin2

(
1

2
q · a

)
h̄ωλ(q) ' 1

4
nphh̄ω0 (25)

whereω0 is an average longitudinal optical phonon frequency. Mott and collaborators [24]
obtained an expression for the dc conductivity similar to equation (21) except that the transfer
integraltp contains an electron overlap term, exp(−2γ a), such that(

tp

h̄

)2

τ ' ω0 exp(−2γ a) (26)

and

σM
hop= Anω0e

2a2β exp(−2γ a) exp(−Uβ) (27)

whereU comprises two terms, one(UD) arising from atomic disorder and the other(UH)

arising from thermally activated hopping as indicted in equation (21):

U =
{
UH +UD for T > θD/2 (28a)
UD for T < θD/2. (28b)
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We have recently found evidence of polaronic transport with and without FC transitions in
oxide superconductors [23] and consider that this occurs in manganites also. To determineτ and
UH we therefore discuss the atomic and magnetic long- and short-range orders in manganites.
According to the estimates of Ishiharaet al [5], the orbital ordering temperature for LaMnO3

is much higher than the spin ordering temperature. The method for determining the bond
ordering temperature is discussed below.

4. Long- and short-range order

We consider a ferromagnetic binary alloy AB and, following Mutoet al [25], examine the
dependence of the order on temperature using the Ising model in which the spins are parallel
and anti-parallel. We consider the internal energy associated with the bond energies of AA,
AB and BB nn pairs and denote them asνij (i, j = A,B). Since separating bond and charge
orders is difficult, we use a simplified approach. For LaMnO3 we take A and B as theα- and
β-states of the eg electron, while for La0.5Ca0.5MnO3 in the metallic state we treat Mn3+ and
Mn4+ ions as A and B. For intermediate values ofx we take bond or charge (atomic) order
depending upon the situation. We denote the total numbers of nearest neighbours as follows:∑

ij
σσ ′

Ai(σ )Aj (σ
′) = QAA = QAA (↑↑) +QAA (↑↓)

∑
ij
σσ ′

Bi(σ )Bj (σ
′) = QBB = QBB(↑↑) +QBB(↑↓) (29)

∑
ij
σσ ′

Ai(σ )Bj (σ
′) = QAB = QAB(↑↑) +QAB(↑↓).

The energiesνij (i, j = A,B) depend on the spinsσ , σ ′ and statesα, β of the occupied
eg orbital as can be seen in equations (4) and (16). The bond order–disorder temperature of
LaMnO3 can therefore be expressed as

kBTca= E′b (30)

where

E′b =
4ν(Qαα

AA (↑↑) +Qββ

AA (↑↑) + 2Qαβ

AA (↑↑))
Q

(31)

ν = ναβAA (↑↑)−
(
νααAA (↑↑) + νββAA (↑↑)

2

)
(32)

Q = Nz

2
(33)

for σ = σ ′. HereN is the total number of Mn atoms,z is the number of nearest neighbours
andQ is the total number of nearest-neighbour pairs. For doped manganites, the polaron
stabilization energyεp depends on the Mn3+–Mn4+ pairs. If this dominates,ν is given by

ν =
∑
i=α,β

[
νiiAB(↑↑)−

(
νiiAA (↑↑) + νiiBB(↑↑)

2

)]
. (34)

Following Mutoet al [25], we define the bond (atomic) long-range (Sa) and bond (atomic)
short-range (σa) order parameters as follows:

Sa = (r↑ + r↓)− (r↑ + r↓)r
(r↑ + r↓)m − (r↑ + r↓)r

(35)
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σa = q − qr

qm − qr
(36)

q = QAB

Q
. (37)

Here the subscripts m and r stand for maximum and random and refer to values atT = 0
andT > Tc. r↑ denotes the right bond (atom) with spin up. The magnetic long-range order,
Sm, is defined as

Sm = (r↑ +w↓)− (r↑ +w↓)r
(r↑ +w↓)m − (r↑ +w↓)r

(38)

wherew↑ denotes the wrong bond (atom) with spin up. The activation energyUH in
equation (25) depends on the phonon wave vectorq and the charge-carrier transfer vector,
Xi −Xj = a whereXi andXj denote the position vectors before and after the jump. We
have further seen that the probabilities of virtual and real transfers depend on the bond and
spin order as well as on the charge order when itinerant states are introduced on doping. On
the basis of equations (21), (25) and (28), we express the activation energy of manganites as

U = U0ξ
2 (39)

U0 = 1

2
〈α〉〈h̄ω〉 = 1

4
nphh̄ω0 (40)

ξ2 =
{ 〈sin2( 1

2q · a)〉 = S2
a(1− Sm)

2σ 2
a for T < Tca

σ 2
a for T > Tca

(41)

whereSa, σa and Sm are defined above. Forq normal toa, ξ = 0. This, along with
equation (22b), describes the motion of the correlated polaron in which the activation energy
vanishes and the transfer integral and relaxation time are determined by the longitudinal optical
phonon frequencies. In the presence of magnetic interactions between the mobile and localized
charge carriers in manganites, in addition to the contribution from phonons toτ in equation (24),
there occurs a contribution,τs, from spin–spin scattering. Following Fisher and Langer [26] it
can be shown that for ferromagnetic spin arrangement

1

τs
= 1

τ
(1−m2(t))σ 2

a (42)

wherem(t) is the reduced magnetization at the reduced temperaturet = T/Tc. We get finally

1

τeff
= 1

τ
+

1

τs
. (43)

If the magnetic orderSm in equation (41) is not equal to 1,U = UH does not vanish in
equation (21). The dc hopping resistivity in the correlated small-polaron model is then given
by

ρc
hop=

AT

n

[
1 +

{
1−m2(t)

}
σ 2

a

]
cosh2

(
εp

2T

)
exp(U/T ) (44)

where

A = 1.13kB

ωpha2e2
. (44a)

Hereεp andU are expressed in temperature units. For an antiferromagnetic lattice, as spin–
spin scattering dominates over that due to phonons given in equation (24), and hopping occurs
only for parallel spins,

1

τeff
= 1

τ0
m2

A(t) (45)
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wheremA(t) is the reduced magnetization of one of the two sublattices that are coupled anti-
ferromagnetically at the reduced temperaturet = T/TN andτ0 is a relaxation time independent
of T . In that case, in the AF region the resistivity of the correlated polaron is

ρc
A = ρ0Am

2
A(t) cosh2

(
εp

2T

)
(46)

while in the ferromagnetic region it is given by

ρc
F = ρ0F[1 + {1−m2

F(t)}σ 2
a ] cosh2

(
εp

2t

)
. (47)

Hereρ0A andρ0F are constants independent ofT andm2
F(t) is the reduced magnetization in

the ferromagnetic region. The temperature dependence of the resistivity for Nd0.5Sr0.5MnO3

given by Caignaertet al in reference [22] fits equation (46) over the range 10< T < 160 K
and equation (47) over the range 160 K< T 6 265 K for the following parameters:
ρ0A = 0.4� cm,ρ0F = 1.4× 10−3 � cm,mA(t) = mF(t) = (1− t2)1/2, σa = 1, εp = 30 K,
TN = 160 K andTc = 265 K. Equation (46) explains the unusual upturn in the resistivity curve
for T < 40 K and equation (47) accounts for the temperature independence of the resistivity
for T > Tc. This supports a polaronic nature for the charge carriers.

We take the following analytical forms forSa andσa which approximately fit the values
of these parameters for AB3 alloys obtained by Nix and Shockley [27]:

Sa = (1− 0.6t3ca)
1/2 for tca < 1 (48a)

σa = (1− 0.75t3ca)
1/2 for tca6 1 (48b)

Sa = 0 for tca > 1 (48c)

σa = (1− 0.9t0.25
ca )1/2 for tca > 1 (48d)

Sm = m(t) = (1− t2)1/2 for t < 1 (48e)

tca= T/Tca t = T/Tc. (48f)

The analysis of the resistivity data yields bothTc andTca. We show later, in section 6, that
equation (44) leads to an expression for the magnetoresistance which is in agreement with
experiment.

5. The temperature dependence of the magnetization

We have seen that the resistivity is dependent on the magnetization, so the temperature and
field dependence of the magnetization is required to study the magnetoresistance in doped
perovskite manganites. Most of the interesting CMR studies reported are for 0.266 x 6 0.5
in which the spin arrangement is usually that of a collinear ferromagnet. We restrict our
discussion to this region. Since the total spinI is such thatσ = 1

4I andS = 3
4I, we treat

the system within the Ising model of the ferromagnetic binary alloy. The spins are collinear
and constitute four groups, A1(Mn3+↑), A2(Mn4+↑), B1(Mn3+↓) and B2(Mn4+↓). A magnetic
Bravais lattice exists for A1−xBxMn3+

1−xMn4+
x O3 for x = n/8 wheren is an integer, and has a

cell constant 2a, which is double that of the chemical cell. The moments occupy eight corners
and twelve edge-centre, one body-centre and six face-centre positions of the cube and there
are eight Mn atoms per unit magnetic cell.

We have seen in section 2 that the Mn3+–Mn3+ interaction in LaMnO3 is highly anisotropic,
with J a = 1.61 meV= +19 K andJ c = −0.62 meV= −7.5 K. On doping, when mobile
charge carriers are introduced, an isotropic ferromagnetic interaction is introduced through
double exchange which, according to de Gennes [11], cannot be expressed in pairwiseIi · Ij
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form. The dependence of the magnetization on temperature is calculated using the Weiss-field
approximation. In the Ising model with moments distributed on four sublattices, we need
to specify three exchange constants which describe the energy of interaction of Mn3+–Mn3+,
Mn4+–Mn4+ and Mn3+–Mn4+ ion pairs. Of these, we obtained an estimate of the antiferro-
magneticJ (Mn4+–Mn4+) for La1−xCaxMnO3. It is −0.62 meV forx = 0 and−0.55 meV
for x = 1. AsTc for A1−xBxMnO3 depends on the A and B cations and varies from 80 K to
400 K, we assume that the dominant interactionJ (Mn3+–Mn4+) in the collinear ferromagnet
spin arrangement changes from 5 K to 20 K. ForTc nearly 150 K, we take the following
exchange constants:

J1 = J (Mn3+–Mn3+) = −7.9 K

J2 = J (Mn4+–Mn4+) = −6.7 K (49)

J3 = J (Mn4+–Mn3+) = 6.0 K.

TheJs in equation (49) require that if ions in groups A1 and B2 occupy the sites (000) and
(aa0), then those in A2 and B1 occupy (a00) and (aaa). The ions in groups A1 and A2 constitute
a magnetic sublatticeP and those on B1 and B2 constitute a sublatticeQ. It is convenient to
express the magnetization in terms of four sublattices A1, A2, B1 and B2 formed by the ions in
the four groups. The magnetic moment per Mn atom,µ, assuming collinear spin arrangement
and spin-only values is

µ̄ = 1

N
[4{n(A1)− n(B1)} + 3{n(A2)− n(B2)}] (50)

wheren(qi) (q = A, B, i = 1, 2) denotes the number of Mn atoms in the sublatticeqi andN
is the total number of Mn atoms. The magnetization of theqi-sublattice in the molecular-field
approximation is

Mqi (T ) = Mqi (0)Bsqi (xqi ) (qi = A1,A2,B1,B2) (51)

where

xqi =
(
sqi gqiµB

kBT

)
Hqi (52)

Mqi (0) =
(
nqi sqi gqiµB

8a3

)
(53)

with the Weiss field given by

Hqi =
∑
qj

λqiqjMqj (54)

λqiqj =
2zqiqj Jqiqj
Nqj gqi gqj µ

2
B

(55)

wherezqiqj is the number of nearest neighbours on thej th sublattice to an atom on theith
sublattice.Nj is the number of atoms per unit volume on thej th sublattice,gi andgj are
the Land́e factors for the ions on theith andj th sublattices respectively andµB is the Bohr
magneton. The magnetization is obtained from equation (51). The effect of double exchange
which contributes nearly +bx/4S2 to the exchange constant can be take into account by suitably
modifying the value ofJ3 to fit the experimental results. It is easily verified that in the
present case out of sixteen only four Weiss-molecular-field constants are nonvanishing. These
areλA1A2, λA1B1, λA2B2 andλB1B2. A computer program is used to obtain the temperature
dependence of the magnetization using equations (51) and (54) and this is shown in figure 2
for La1−xCaxMnO3 with x = 0.375, 0.5. The values ofMs(0) andTc are given in table 1. The
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Figure 2. Computer solutions for the magnetization curves obtained using equations (51) and (53)
(see the text) for the sublattice arrangements shown in table 1. For curve (a), A1̄ and Ā2 sublattices
are occupied; for curve (b), Ā1, A2̄, B2̄ are occupied; for curve (c), all four sublattices are occupied.
The values of the exchange constants are taken asJ1 = −7.9 K, J2 = −6.7 K andJ3 = +6.0 K.

Table 1. Values of µ̄, Ms(0) and Tc obtained for the magnetic order on the 4-sublattices of
La1−xCaxMnO3 for x = 0.5 and 0.375, with ordering denoted as a, b and c. TheMs(T ) curves are
given in figure 2. The magnetic unit-cell constant is 2a wherea = 3.858 Å and contains eight Mn
atoms. The values of the exchange constants used areJ1 = −7.9 K, J2 = −6.7 K, J3 = +6 K.

Sublattice order x A1̄ A2̄ B2̄ B1̄ µ̄ (µB) Ms(0) (G) Tc (K)

a 0.5 ↑↑↑↑ ↑↑↑↑ 3.5 570 122
b 0.375 ↑↑↑↑ ↑↑↑ ↓ 2.625 424 150
c 0.375 ↑↑↑ ↑↑ ↓↓ ↓ 0.875 141 148

subscript(1̄) relates to crystallographic sites (000) and (aa0) and (2̄) to (a00) and (aaa). Figure 2
shows that identical compositions as in (b) and (c) can give very differentMs(T ) curves if the
distribution of ions on sublatticesqi are different. Since the number of Mn4+–Mn3+ nn linkages
in the two cases remains nearly the same, the magneto-transport properties are similar. This is
also reported by Bahaduret al [13]. They find that a sample of La0.6Er0.07Ca0.33MnO3, when
prepared by the gel route, has anMs(T ) curve similar to figure 1(c) and its value ofMs(0) at 1 T
is 122 G. But when the same composition is synthesized by the ceramic route, theMs(T ) curve
is like figure 1(a) and the value ofMs(0) is 610 G. The resistivity curves for the two samples are
nearly the same over the temperature range 5 K to 300 K.From figure 2 and table 1, it follows
that the gel route sample forx = 0.375 has magnetic ordering of the c type and the ceramic
route sample has magnetic order of the b type with the magnetization ofB2̄ reversed due to the
double-exchange interaction. This makes theMs(T ) curve close to curve (a) of figure 2. In
such cases the magnetization curve can be obtained using a single exchange constant. This is
carried out for magnetic order a in table 1 usingJ3 = +12 K forHext = 0 and 6 T, and shown
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Figure 3. The computer solution for the magnetization curve using equations (51) and (53) (see
the text) with the Ā1 and Ā2 sublattices fully occupied andJ3 = +12 K. The external field is zero
for curve (a) and 6 T for curve (b). The experimental points are taken from reference [21].

as curves (a) and (b) in figure 3 respectively. The experimental points forMs(T ) obtained for
x = 0.33 in La1−xCaxMnO3 by Pierreet al [21] show a reasonably good fit.

As the exchange constants for manganites perovskite are small, application ofHext has a
significant effect on the magnetization. In figure 4 we plot theMs(T ) curve for magnetic order
a forHext = 0, 1.5 T and 6T. The exchange constant is taken as 6 K which is equal to a Weiss
field of 9 T nearTc. We note thatTc is 120 K and is sharply defined whenHext = 0. On the
application of a field of 6 T, even at 400 K there is a finite value of the magnetization. This
accounts for the CMR effect as shown in section 6.

The reported values ofTc depend on the nature of the A-site cation and are 85 K, 260 K and
392 K for Sm0.68Sr0.32MnO3 [28], La0.7Ca0.3MnO3 [29] and La0.7Sr0.3MnO3 [30] respectively.
Furthermore, Damayet al [28] find thatTc increases linearly with the interpolated cation
radius of the A ion in Sm0.56−xSr0.44−xCa2xMnO3. As the magnetic order is that of a collinear
ferromagnet, a single exchange constant,J3, can be taken. With the increase in the size of
the A cation, the Mn–Mn distance,d, increases. With increase ind, J t2g which opposes
ferromagnetic coupling due to the hopping polarons decreases, thereby increasingJ3. If J3

changes from 5 K to 21 K, theobserved variation ofTc can be explained.

6. Magnetoresistance

It follows from equations (39) and (44) that the electron transport in manganites is dependent
on the magnetic and bond (atomic) order in the compound. The resistance ratios with and
without an external fieldH can be obtained from equation (44) and are given by

ρr = ρ(T , 0)

ρ(T ,H)
= [1 + {1−m2(t, 0)}σ 2

a ]

[1 + {1−m2(t, H)}σ 2
a ]

exp

[
U0

T

{
ξ2(T , 0)− ξ2(T ,H)

}]
(56)
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Figure 4. The computer solution for the magnetization curve using equations (51) and (53) (see
the text) with the Ā1 and Ā2 sublattices fully occupied and external fieldHext = 0 (a), 1.5 T (b)
and 6 T (c). The exchange constantJ3 used is 6 K.

or

ρr ' exp

[
U0

T

{
ξ2(T , 0)− ξ2(T ,H)

}]
. (56a)

In figure 5 a plot ofSa, Sm, σa andξ2 as functions oftca is given forTc/Tca = 0.5. Sm for
Hext = 0 has been obtained from figure 4 takingTc = 120 K and is shown in figure 5.Sm for
Hext = 6 T has also been calculated and used to estimateξ2 from equation (41). The values
of ξ2(0.5, 0) andξ2(0.5, 6 T) are shown by solid curves and that ofξ2(0.33, 0) by a broken
curve in figure 5.ρr can be readily obtained from figure 5 ifU0 is known.

The magnetoresistance (MR) is defined as

1ρ

ρ0
= ρ(T ,H)− ρ(T , 0)

ρ(T , 0)
= 1

ρr
− 1. (57)

Some general comments can be made on the basis of equations (56) and (57) and figure 5
on the dependence of the resistivity and magnetoresistance on temperature and field:

• The activation energyU0ξ
2 at low temperature (tca� 1) and high temperature (tca� 1)

is vanishingly small and peaks in between these limits.
• The peak inξ2 occurs nearT = Tc. This peak increases in magnitude astpeak

ca , whereξ2

peaks, decreases. Consequently MR increases ast
peak
ca decreases.

• Under an applied field, a significant reduction inξ2 occurs and the peak shifts to higher
temperature, enhancing the CMR effect.

All of these features are observed in the CMR effect in manganite perovskites.
In figure 6 the data onρ(T ) for La0.7Sr0.3MnO3 with and without an external field of

6 T obtained by Mahendiranet al [30] are compared with equation (44) using the parameters
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Figure 5. Values of the long-range bond (atomic) order,Sa, long-range magnetic order,Sm, and
short-range bond (atomic) orderσa calculated from equations (48) (see the text) and plotted as
functions oftca = T/Tca. The values ofSm have been obtained from figure 4.Tc/Tca has been
taken equal to 0.5.ξ2 has been calculated from equation (41) and plotted as a function oftca.

Figure 6. The theoretical curve forρ(T ) for La0.7Ca0.3MnO3 calculated from equation (44) and
the parametersA/n, εp, U0, Tc, Tca taken from table 2 is compared with the experimental data
from reference [30].

given in table 2. The phonon frequency assumed is 5× 1012 Hz. Forρ(T ,H) only the value
of Sm = m(t) changes from that ofρ(T , 0). This is obtained from the computer solution of
Ms(T ) given in figure 3. For example,Sm(200, 0) = 0.51 whileSm(200, 6 T) = 0.59. The
general trend ofρ(T ) is reproduced both when the field is present and when it is absent.

The largest number of carriers for La0.7Ca0.3MnO3, from table 2, is 2.7× 1021 cm−3.
This gives 0.16 electrons per Mn atom which is half of the theoretical value. There is a large
variation ofn even for the same composition. This possibly arises due to the polycrystalline
nature of the samples.

Damayet al [28] have observedρr = 105 at 75 K for Sm0.58Sr0.3Ca0.12MnO3 at 5 T.
They have also reported theR(T ) values atH = 0 for Sm0.56Sr0.24Ca0.2MnO3. These are
compared in figure 7 with the theoretical plot obtained using equation (44) and the values of
the parameters given in table 2. The charge densityn could not be estimated as the dimensions
of the sample were not available.
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Table 2. The parameters used to fit theρ(T ) data obtained using equation (44) (see the text). The
value of the phonon frequency is taken asωph = 5× 1012 Hz. The cell constanta = 3.858 Å.Tc
is obtained from the magnetic data where available. The rest of the parameters are chosen to get
the best fit to theρ(T ) curve.

A/n n εp U0 Tc Tca

Compound (104 � cm K−1) (1020 cm−3) (K) (K) (K) (K) Reference

La0.7Ca0.3MnO3 1.8 4.5 100 250 260 400 [30]
La0.6Er0.07Ca0.33MnO3 1.0 8.1 150 650 180 400 [13]
La0.57Er0.13Ca0.30MnO3 2.0 0.40 70 650 95 300 [13]
Pr0.7Ca0.3MnO3 3.0 2.7 70 650 75 300 [29]
La0.1Pr0.7Ca0.2MnO3 0.8 10.1 70 650 50 300 [29]
La0.35Pr0.35Ca0.3MnO3 0.4 20.2 70 450 150 300 [29]
La0.7Ca0.3MnO3 0.3 27 70 450 250 300 [29]
La0.2Y0.5Ca0.3MnO3 3.0 2.7 600 900 50 400 [29]
La0.35Y0.35Ca0.3MnO3 3.0 2.7 600 650 75 300 [29]
Sm0.56Sr0.24Ca0.2MnO3 — — 100 1300 95 200 [28]

Figure 7. The theoretical curveρ(T ) for Sm0.56Sr0.24Ca0.2MnO3 obtained using equation (44)
and the parametersA/n, εp, U0, Tc, Tca taken from table 2 is compared with the experimental
values from reference [28].
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From equation (56),

ln ρr = U0

T

[
ξ2(T , 0)− ξ2(T ,H)

]
. (58)

We obtain from figure 5, withTc = 75 K, Tca = 150 K, U0 = 1300 K, ξ2(Tc, 0) −
ξ2(Tc, 6 T) = 0.44. This givesρr = 2× 103, close to what is observed.

We conclude that for a large CMR effect the binding energyεp of the polaron should be
small and comparable to the magnetic and bond (atomic) ordering energies. On the other hand
the number of phonons in the polaron cloud that determinesU0 should be large.

7. Conclusions

It is shown that the transition from the antiferromagnetic insulating to the ferromagnetic
metallic state due to competition between the super-exchange and double exchange expected
on the basis of the theory of de Gennes occurs in Nd0.5Sr0.5MnO3. In this system the electrical
conduction is by small-polaron hopping, and the relaxation processes for hopping, in both
the antiferromagnetic and the ferromagnetic phases, are controlled by the spin–spin scattering.
For other perovskite manganites, for a certain concentration of Mn4+ ions the magnetic order is
determined by the bond ordering and anisotropic super-exchange between Mn3+ and Mn3+, and
the isotropic super-exchange between Mn4+ and Mn4+, as well as by the double-exchange and
super-exchange interaction of Mn3+–Mn4+ ion pairs. The dc transport for correlated polarons,
for which Frank–Condon transitions do not occur, can be described as a diffusion of small
polarons such that the mobility satisfies the Einstein relationship. The activation energy for
uncorrelated polarons, for which Frank–Condon transitions occur, depends upon the number
of phonons in the polaron cloud and so is related to the long- and short-range atomic and
magnetic order parameters. This accounts for the presence of colossal magnetoresistance in
the system.
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